Differential Evolution Algorithm with Fine Evaluation Strategy for Multi-dimensional Function Optimization Problems
نویسندگان
چکیده
For multi-dimensional function optimization problems, classical differential evolution (DE) algorithm may deteriorate its intensification ability because different dimensions may interfere with each other. To deal with this intrinsic shortage, this paper presents a DE algorithm framework with fine evaluation strategy. In the process of search, solution is updated and evaluated dimension by dimension. In each dimension, the updated value will be accepted only if it can improve the solution. In case that there is no improvement found in any dimension, the new solution, which is calculated using classical mutation operator only, will be accepted in low probability. This strategy can improve diversification and keep DE algorithm from premature convergence. Simulation experiments were carried on typical benchmark functions, and the results show that fine evaluation strategy can improve the performance of DE algorithm remarkably.
منابع مشابه
Optimization of the Prismatic Core Sandwich Panel under Buckling Load and Yield Stress Constraints using an Improved Constrained Differential Evolution Algorithm
In this study, weight optimization of the prismatic core sandwich panel under transverse and longitudinal loadings has been independently investigated. To solve the optimization problems corresponding to the mentioned loadings, a new Improved Constrained Differential Evolution (ICDE) algorithm based on the multi-objective constraint handling method is implemented. The constraints of the problem...
متن کاملFuzzy logic controlled differential evolution to solve economic load dispatch problems
In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...
متن کاملPareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm
The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملCombined Economic and Emission Dispatch Solution Using Exchange Market Algorithm
This paper proposes the exchange market algorithm (EMA) to solve the combined economic and emission dispatch (CEED) problems in thermal power plants. The EMA is a new, robust and efficient algorithm to exploit the global optimum point in optimization problems. Existence of two seeking operators in EMA provides a high ability in exploiting global optimum point. In order to show the capabilities ...
متن کامل